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Classical magnetoresistance of an antidot lattice 

R W Tank and R €8 Stinchcombe 
Department of Physics, 1 Keble Road, Oxford, OX1 3NP, UK 

Received 25 March 1993. in final f o ~  20 May.1993 

Abstract, We undertake a theoretical study of an ideal lattice of c b l a r  hard wall amidots 
in a low magnetic field where classical skipping orbits can exist" We study the transmission 
of electrons thmugh constrictions ktween antidots. and thence their paths through the lanice, 
which cm tahe the form of a correlated random walk. Analytic expressions for the conductivity 
tensor are derived, and mese give numerical values comparable with recent expenmenu.' 

1. Introduction 

This paper provides a theoretical description of the magnetotransport properties of 'antidot' 
array structures. 

The fabrication of semiconductor microstructures using molecular beam epitaxy, metal 
organic vapour phase epitaxy; focused ion  beam techniques etc, has in the last few years 
provided great stimulus to experimental work on~ the  fundamental properties of small 
electronic systems. Nanostructures, such as quantum dots (Reed 1988), and quantum 
wires (Roukes 1987). as  well^ as layers, have shown a remarkable range of interesting 
behaviours, in capacitance and spectroscopic measurement (Smith 1988, Hansen 1989, 
Sikorski 1989. h r k e  1990), in susceptibilities, and in transport effects (Roukes 1987) 
with or without the presence of a magnetic field. Dot and antidot lattices are particularly 
interesting candidates for spectroscopic (Lorke 1992) and transport studies (Weiss 1991, 
Takahara 1991). They possess the features of isolated quantum dots, such as modified 
cyclotron resonance branches, and structure in the capacitance (Smith 1988), due to the 
confining potential and to the effect of the Coulomb interaction between small numbers of 
charges in the well. In addition they may show novel collective (Que 1988, Kem 1991) 
and single-particle effects; in particular, the levels found in a single dot become shifted and 
broadened due to tunnelling between dots (or antidot reservoirs) in a dot or antidot lattice, 
conductivity can range from hopping to band type, and may be caused to switch between 
the two types on changing carrier concentration by photoluminescence or by varying a gate 
voltage. While a simple intersection in the form of, for example, a cross-shaped constriction, 
gives rise to rich transmission behaviour (Ford 1990), a lattice of such constrictions can 
arise in quantum antidot systems, and thus have profound effects on transport, some of 
which are the subject of the present paper. New quantum interference effects occur, which 
are expected to be rich in structure. However, even at the classical level the interplay of 
classical orbit shape and constriction geomehy leads to remarkable effects. This is the 
situation discussed in the, present paper. The richest behaviour occurs when a magnetic 
field is present,  which^ is the situation addressed here. Recent experiments have shown 
pronounced structure in the magnetoresistance of periodic antidot arrays (Ensslin 1990, 
Weiss 1991, Fang 1990, Sundamn 1992, hereafter denoted as I) which can be interpxted 
in part using the approach developed in the theoretical investigation given in this paper. 
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The layout of this paper is as follows. Section 2 describes the classical electron orbits 
and their passage through a constriction in terms of the motion of orbit centres. Since a 
linear response approach will be used for the conductivity, the orbits are only needed in 
zero electric field. Section 2 begins with a description of the idealized model used for 
the antidot array. Section 3 provides a description of the current and includes an effective 
particle picture. Section 4 applies the description to the conductivity of the antidot lattice. In 
a typical low-scattering regime the orbit centres undergo a random walk through the antidot 
array. The characteristics of the walk, and hence of the magnetoconductivity, are determined 
by the propelties discussed in section 2. Results for the conductivity as a function of field 
are given at the end of section 4. Section 5 briefly compares the result with experiment and 
provides a concluding discussion. 

2. Classical electron orbits and passage through a constriction 

2.1. Model 
Our model for a real antidot array is a perfect square lattice (with lattice constant a) of 
identical antidots. A portion of such a lattice is shown in figure 1. In the model each antidot, 
of radius R,  has an infinite hard wall with which the electrons collide elastically. Between 
the electrons the potential is constant. In addition we neglect altogether electron-electron 
interaction effects, and treat the electron motion classically. The classical approximation 
requires orbit radii much larger than quantum length scales. In the experiments reported 
in I the condition is weakly satisfied in the sense that, while the two scales are not very 
different, no quantum interference effects appear, and gross aspects of the conductivity 
appear to be captured by the approximation. Then the assumption of an infinite hard 
wall is not severe, since in semiclassical situations the main effect is the reflection at the 
classical turning point, rather than the orbit details near that point. The approximation 
of a perfect lattice is substantially correct for many real (finite) arrays, in particular the 
antidot array of I. However, as discussed in section 5, deviations from perfect periodicity 
may be important in particular regimes. In particular they are expected to be the reason 
for a threshold phenomenon seen in I. The neglect of electron-electron interactions is very 
difficult to justify, except in the cases of cyclotron resonance and Hall effect, where the 
Kohn theorem (Kohn 1961) and its extension (Stinchcombe 1974) applies, and then only 
for unconfined electrons or those in parabolic wells (Maksym 1990, Brey 1989). Section 5 
discusses some possible effects excluded by the neglect of electron interactions in the present 
magnetotransport context 

We proceed to investigate the propenies of the model. Taking the origin as the centre of 
an antidot, the electrons then reside in reservoirs centred on ((nl + ;)a, (nz + ;)a) (where 
nl and nz are integers) which are joined by constrictions of width 21 = a - 2R. In the 
presence of a uniform perpendicular magnetic field the electrons will undergo cyclotron 
motion with radius r,. In the regime where 1 < r, c a / f i  - R electrons that are near 
to an antidot will perform a skipping orbit (Halperin 1982, Biittiker 1988, F'range 1968, 
Kosevich 1955) along the edge of that antidot (see figure 1). 

The motion of an electron can always be described in terms of the motion of the centre 
of its cyclotron orbit For a skipping electron, this orbit centre will step around the antidot, 
remaining at the same distance r from the antidot (see figure 1). The angle through which 
the orbit centre rotates in each step is 

- 
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Figure 1. A portion of the antidot lattice 
containing four circular antidots. W O  
electrons are shown performing skipping 
orbits: one is reflected at a constriction and 
Ihe other transmitted. The do8 represent 
the successive positions-of the orbit centres. 
Also shown is the radius r and phase # of 
an orbit centre. 

Figure 2. This series of diagrams shows the initial line of orbit 
cenves and its first three evolulions. The inner circles are the edges 
of the anlidoh, which have radius R. The outer circles have radius 
R + r,, the maximum orbit radius of a skipping elecuon. 

2.2. Passage of an orbit centre through a constriction 

On reaching a constriction a skipping electron will either be reflected by collisions with the 
neighbouring antidot, or be transmitted to the next reservoir (see figure 1). The outcome 
depends upon the ‘radius’ r and ‘phase’ of the orbit centre, as we now discuss. Consider 
the line PQ of initial orbit centres shown in figure 2(a). The next position of these is the 
line PS shown in figure 2(b) (PS is thefirst evolution of the line PQ). The section of the line 
RS contains orbit centres that have now been transmitted. Consequently only the section 
PR need be considered for the next step or second evolution. Electrons with orbit centres 
on PR will collide with the neighbouring antidot and therefore the next position of their 
orbit centres will be given by rotation around that antidor. 

R*% ~& 2‘ Figure considered 3. in The the initial texL (U) a m  Shows of orbit ifs division cenbes 

into regions 1, (containing c e n t m  that are 
reflected), and I1 (containing cenm that are 
msmitted). (b) Shows funher Subdivisions 
discussed in the text. The outer circles have 

c 41 2” 

la1 lbl radius R f r,. 
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Figures 2(c) and 2(6) show the second and third evolutions of PQ. The line section PT 
is reflected and UV is transmitted. 

2.3. Evolution of an initial area 

Whether or not an orbit centre is transmitted or reflected depends not only on r but also on 
$. In order to cover all possibilities an initial area of orbit centres must be considered. 

Figure 3(a) shows a suitable area. bounded by the line PQ and its first evolution. 
Electrons with orbit centres in area I are reflected and those with centres in area II are 
transmitted. We therefore have three distinct annular regions in which the orbit centre can 
lie They are: 

A r, < r  < R+r,  electron is reflected 
B r b < r c r b  $-dependent transmission or reflection 
C R - r , c r c r b  electron is transmitted 

The dependence of r, and rb on the magnetic field will be needed later and is discussed at 
the end of this section. 

It is possible to make further subdivisions of the initial area, and some of these are 
shown in figure 3(b). Electrons with orbit centres lying in region a are transmitted without 
ever colliding with the neighbouring antidot. Those with centres in region b are reflected 
after colliding once. Region b is bounded by the lines PR and 1-2', where the line 1-2' is 
given by the first anticlockwise (i.e. backwards) evolution of the line 1-2. 

Similarly, electrons with centres in region c are transmitted after one collision with the 
neighbouring antidot. Region c is bounded by the lines 3-4 and 3'4'. where 3'4' is the 
second anticlockwise evolution of the line 3-4. Furthermore, region d contains centres that 
are reflected after two collisions. Region d is bounded by 1-2' and 1"-2". where 1"-2" is 
the third anticlockwise evolution of the line 1-2. 

This divisioning can be continued indefinitely. As the boundary of I and Il shown in 
figure 3(a) is approached, the number of collisions that the electron has in the constriction 
region continues to rise. In tum this means that the length of time that the electron spends 
there rises. An electron that spends a lot of time in the constriction is very likely to collide 
with any impurities there. Such a collision is just as likely to result in the electron being 
(eventually) transmitted or reflected. Thus the presence of impurities will have the effect 
of slightly widening the annular region B. 

2.4. Results 

When the subdivision of the initial orbit area shown in figure 3(b) is carried out, it is found 
that there is little difference between the third and fifth evolutions of PQ and practically 
no difference between the fifth and seventh. A similar result applies for the second, fourth 
and sixth evolutions. The boundary between the reflected and transmitted regions can be 
approximated by the fifth evolution of the line 1-2, and hence r, and 5 can be obtained. 
It is found that r, shows little variation with cyclotron radius whereas rb shows a linear 
decrease with re 

It is far harder to find an approximation for f ,  the fraction of orbit centres in annulus 
B that are transmitted. An estimate of f = 0.4 was obtained by direct evaluation of areas 
in a diagram like figure 3(b). However, the results to follow are not very sensitive to the 
value o f f .  
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2.5. Mixing of orbit centres at a constriction 

An electron which experiences a collision with a neighbouring antidot will emerge with a 
different radius of orbit from' that with which it came in. .By symmeay under reversal of 
the magnetic field, a reflected orbit can onlyemerge within annuli A or B, and a transmitted 
one can only emerge within B or C. A, transmitted orbit centre suffers little change in its 
radius, even if it hai collided many times within the constriction. Conversely a reflected 
orbit centre suffers a far larger change in its radius. This means that orbit centres in annuli 
A and h tend to be mixed by passage through a cons~hiction while those in C remain, to a 
good approximation, independent. 

3. Electron current and an effective particle picture 

3.1. Procedure 

Skipping electrons will orbit around an antidor, and thus constitute a circular current flow. 
It is necessary next. to work out how much current is flowing in each of the three annular 
regions A, B and C. Calculation of'this requires knowledge of both the electron .occupancy 
and angular velocity of each orbit. 

3.2. Occupancy of an orbit centre 

.~ 

I 

Consider two areas A I and A2 = 2A I of orbit centres in an infinite two-dimensional electron 
gas (hereafter denoted 2DEG). There will correspondingly be twice as many electrons with 
their orbit centres in A2 than in Al .  However this simple proportionality does not hold near 
the boundary of a 2DEG. 

Consider an infinitesimal area dA at a distance r from an antidot centre. If r < R - r, 
then there will be no electrons with orbit centres in dA. If r R + r, then there will 
be the same number as for an infinite 2 D a .  For R - r, i r < R + r, the number of 
electrons will be a function of r ,  namely now(r)dA (here no is the electron sheet density in 
the reservoir). A suitable candidate for w(r)  is the fraction of a cyclotron orbit completed 
between successive collisions with the antidot. This choice preserves the total number of 
electrons when the B field is altered. 

3.3. Current density at radius r 

It is simple to define a time-averaged angular velocity $(r) for an orbit centre. The skipping 
frequency for an electron with its centre a! radius r is oc/(2nw(r))  and therefore 

The current density for orbit centres at radius r is then given by 

This can then be integrated over the appropriate ranges to yield the current in each annulus. 
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3.4. Effective particle picture 

It will be found later that it is sometimes inconvenient to use a centre. angular velocity 
dependent upon r. It is easy instead to introduce a system of effective particles that orbit 
the antidot with an angular velocity independent of r but which have the same current 
density as the electron system. These particles have angular velocity 4 = ($(r ) )  = mean 
orbit centre angular velocity. They thus have a current density given by 

R W Tank and R B Stinchcombe 

3.5. Results for annular currents 

In the experiments reported in I, the antidot arrays subjected to magnetotransport 
measurements had lattice spacings of a = 800, 1000, 2000 nm. Of particular interest are 
those of a = 800nm, for which the antidot radius was estimated as R = 300 --f 3601" 
Figure 4 shows the results for annular current as a function of cyclotron radius for radii of 
330 and 360"  The current in annulus C, IC shows little dependence on r,, whereas IA and 
1, both increase with r, as would be expected. The graphs also show the expected decrease 
in IC due to a reduction in the constriction width. These fielddepdent currents will be 
used as a base ingredient within the antidot array conductance treatment which follows in 
the next section. 

160 

120 

80 

40 

I R = 330 nm 

1 
. " 

/ 

_ _ _  current in A 

Current in B 

O 
80 100 120 140 

Cyclotron radius lnml 

Current in A 

Current in0 
--- - current inc i R i 360 nm 

I 
100 120 1LO 

Cyclotron radius lnml 

Figure 4. Circulating current in the three annuli h B and C as a function of cyciofmn radius, 
for (a) R = 330nm and (b) R = 360nm. 
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4. Application to the conductivity of an antidot lattice 

To obtain the conductivity of the antidot lattice requires further consideration of the effect 
on the skipping electrons of scattering by impurities. This scattering is important because 
it provides a mechanism for the population of electrons in different skipping orbits and in 
the reservoir to come to equilibrium. 

It is possible for a magnetic field to localize a reservoir electron in a region of space 
free of impurities, and so dramatically lengthen its scattering lifetime. However, skipping 
electrons are not localized in the same way, and so their lifetime is approximately the same 
as for electrons in zero field r .  

The low-scattering regime is particularly interesting, because here the mean free path of 
the electrons becomes large compared to the size of the lattice.. The electrons then follow a 
random walk, passing from reservoir to reservoir. As discussed in section 4.1 below, these 
orbits give the dominant contribution to the conductivity in this regime. 

W e  only calculate the linear response of the antidot lattice and so all quantities are 
evaluated in zero field 

4.1. Low-scattering regime 

In this case (&-)t) >> 1, and an electron is very unlikely to be scattered between two 
successive constrictions. Because the orbit centres in annulus C are independent of those 
in A and B there are two separate contributions to the conductivity. 

4.1.1. Contributionfrom orbit centres in C.  These orbit centres are always transmitted and 
therefore merely circle a single antidot, passing through neighbouring reservoirs. Suppose 
that these reservoirs have slightly different electron densities. The current in annulus C will 
then be appropriate to some mean of these densities. In reservoirs of slightly higher density 
there will be a slight excess of electrons scattered into C and in reservoirs of lower density 
there will be a slight excess scattered out. This will give a net current flow between the 
reservoirs. 

Figure 5 shows such a situation with a density gradient in the x direction. Consider a 
small element of area, r drd$ in annulus C .  This element will orbit the antidot with period 
T ( r )  = 2 r / d ( r )  and will contain a density of Centres given by 

(no +n($))&)rdrd@ 

where n($) is to be found. If the point @ = 0 is defined to be at the bottom of annulus C as 
shown in figure 5, then n($) will vary between two limits nu = n ( n )  and n l =  -nu = n(0). 
The rate of scattering into the element is proportional to I/r and we have the equations 

i($) = ( f s n ,  - n($)) (~/t) 0 < 4 < i~ 

h($) = (4 - 6no - n ( @ ) )  (l/T) 72 < $ C 2H. 

These equaQons can be solved to give 

The time-average current carried in the x direction by this element is 

1 
d21x = (nu - nl)--w(r)r dr d$ 

T ( r )  
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Figure 5. The contribution to the conduc- 
tivity in the low-scamring regime from elec- 
trons in annulus C. The electrons circle an 
antidot, passing through reservoirs of differ- 
ent e l e a n  density. In reservoirs with den- 
sity no + 6 4 2  there is a slight excess of 
electrons scattered into the annulus C. Cor- 
respondingly the" is a slight excess scat- 
tered out of C in reservoirs with density 
no - SnoJZ. 

which can be integrated to give 

Figure 6. A typical path of an effective particle diffusing through 
the antidot lauice in the low-scattering regime. To the right is 
shown the corresponding w random w a k  

*n 

In addition to I, there will be a current in the y direction, which arises because more 
electrons are scattered into the element in the range 0 c $I -= x /2  than in the range 
r / Z  -= 4 < x. This current is easily shown to be 

In the low-scattering limit the tanh functions can be expanded to first order and the 
conductivity matrix can be deduced from (4) and (5). The result is 

where p is the zero field density of states in the reservoir, (& is the mean angular velocity 
of centres in annulus C, and I: = Ic/no. 

4.1.2. Contribution from A and B .  Consider an electron scattered into a skipping orbit 
with its centTe in A or B. This electron will pass through many constrictions before being 
scattered again. At each constriction the orbit centre is sometimes transmitted and sometimes 
reflected. Its path will look like a ZD correlated random walk. An example is shown in 
figure 6. 
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Figure 7. The Vansmission and retlection of c m n t s  at 
a conswiction The current in annulus C, I,, is omitted 
for clarity. All of lhe current IA is reflected, while a 
fraction f of [B is msmilted and (1 - f) rdlected. 

' ' ' 

This is where the effective particle picture is of use. These particles will ,also follow a 
random walk, but with the advantage that the time taken for each step is the same. This 
random walk still has the following complications. (i) The probabilities of transmission 
and reflection (turning left or right)  re not equal. (ii) If the particle is transmitted then it 
has an enhanced probability of being transmitted again at the next constriction. This arises 
because a transmitted centre must emerge in annulus B: 

The second point implies a correlation between successive steps which makes the walk 
non-trivial. Interacting walk problems of this type can be treated by mapping to equivalent 
king chains (Metha 1986) or by the following procedures. 

Consider a walk of 2N steps, labelling the steps in the manner X I .  y ~ ,  xz, yz . . . X N .  YN. 
Each step can take the value +I or -1, depending on whether it is in  the positive or negative 
direction. We shall treat this walk approximately by proceeding to calculate the average 
'probability that the step xi+l is parallel to the step xi. 

The probability that a transmitted effective particle is in annulus B is 1; whereas for a 
reflected particle it is 

(1 - f)h 
I A + ( l - f ) [ 6 .  

Defining P(T,  R )  as the probability of transmission given that the particle was last 
reflected, and defining P(T,  T )  in a similar manner, we get 

We now use these probabilities to express the probability that the step &+I of the walk 
is parallel to the step x L .  

Suppose that the step xi was a transmitted one. The required probability would then be 
equal to P ( R ,  T ) [ P  (T ,  R) + P(T, T ) ] .  If the step x, was a reflected one then the required 
probability would be equal to P(T,  R ) [ P ( R ,  R )  + P ( R ,  T)] .  Now let pt  be the average 
fraction of steps that are transmitted (see figure 7): 

This then allows the definition of the average probability pfor that x,+l is parallel to x, 
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The correlation function (xj+lxf) is then given in this approximation by -y = pm-ptor. 
Similarly (x jyj )  = 1 - 2pt .  These can be iterated to give 

From these correlation functions the diffusion matrix can be calculated (see appendix). 
The result is 

The conductivity matrix can then be obtained using the Einstein relation, which gives 

4.2. High-scattering regime 

In this case ($(r))r  << 1, and an electron is very likely to bescattered as it moves between 
two successive constrictions. The current canied by skipping orbits entering a constriction 
will then be in equilibrium with the electron population in the reservoir. As the scattering 
increases the mean number of steps taken in a random walk of an effective particle decreases 
until eventually the concept of a random walk breaks down and (10) no longer holds. 

The contribution to the conductivity from annular region C is easily determined from 
(4) and (5 )  by letting r + O+. This gives 

None of the centres in annulus A are transmitted and therefore A makes no contribution 
to the conductivity. In contrast a fraction f of the centres in B are transmitted and these 
contribute to 0. The total conductivity is therefore 

4.3. Results 

The conductivity matrices given by (6), (7) and (10) can easily be numerically evaluated 
and inverted to obtain the resistivity of the lattice. 

The result for the high-scattering case is shown in figure 8, where we have a taken the 
electron density to be 3.3 x 10'5m-2 (comparable to the electronic densities reported in 
I), and performed the calculation for antidot radii of 300, 330, and 360nm. As expected 
the resistivity rises as the constriction narrows. All of the graphs show a steady positive 
differential magnetoresistance (PMR). For the 330 and 3 6 0 m  graphs this PMR is quite small, 
which is a direct consequence of the small dependence of le on the B field. The uptum 
in the 360nm graph occurs when 2rc becomes less than the constriction width. At this 
point the annuli A and B disappear, and IC has far greater B field dependence. The larger 
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Figure 8. Longitudinal resistivity in the case of high 
scanering. The graphs are for Uuee different antidot 
radii. 300. 330 and 360nm. The electron density in the 
reservoir was taken to be 3.3 x 10'5 m-l. 

Figure 9. Longitudinal component of the condudvity 
in rhe low-scattering regime for an antidot radius of 
330 nm and a scattering time I = 24ps. The huo lower 
lines show the separate contributions from annulus C 
and hum annuli A and B. 

PMR seen in the 360nm graph is a consequence of the reduction of the size of annulus C 
with deceasing constriction width. A greater fraction of the conductivity then comes from 
electrons in annulus B, whose current I ,  has greater dependence on magnetic field. 

The results for the low-scattering case are shown in figures 9 and 10. The calculations 
were done for an electron sheet density of 3.3 x 10'' m-* and antidot radii of 300, 330 and 
3601" Figure 9 shows the two separate contributions to the conductivity from annulus 
C and annuli A and B, for the case R = 330nm and r = 24ps. This clearly shows the 
competition between uA+B which has a PMR and uc which exhibits negative differential 
magnetoresistance (NMR). The trend of the total conductivity is dominated by the random 
walk contribution and exhibits PMR. Figures 1O(a) and (b) show the resistivity for the various 
antidot radii for the cases t = 24ps and z = 32ps respectively. Even though these are long 
scattering times they still only correspond to a mean number of steps in the walk of 6 and 8 
respectively. Comparing the graphs to the high scattering case, there is far less dependence 
on antidot radius and a far greater dependence on magnetic field. This is a reflection of the 
dominating contribution of the random walk. In both graphs the line for R = 300 nm levels 
off as 2r, approaches the constriction width 1. As this limit is qproached the annuli A 
and B become very small, and so does the number of particles performing a random walk. 
Annulus C dominates the conductivity leading to a leveling off of the resistivity. Once Zr, 
becomes less than I ,  IC once again develops a larger field dependence and the resistivity 
rises again. 

1 
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Figure 10. Longihldinal resistivity in the m e  of low scattering for various antidot radii. The 
electron density was taken to be 3.3 x IOl5 and the scattering time r as 24ps in (U) and 
32ps in (b). 

5. Conclusion 

We have presented two mechanisms for conduction in an antidot lattice in the presence of a 
magnetic field. One involved scattering into and out of skipping orbits that were localized 
around a single antidot. The other involved orbits that pass through many reservoirs in the 
fashion of a random walk. The model used was a particularly simple one, with a perfect 
lattice of identical hard wall antidots. A more realistic model would need to include a softer 
potential. So long as the potential at the edge of an antidot remained steep, and that within 
the reservoir remained fairly flat, then the concept of skipping orbits would remain a good 
one. The qualitative aspects discussed in this paper would remain valid, but the details of 
the conductance calculations would be changed. An improved model would also have to 
take into account the effects of disorder, in terms of variation of both the lattice constant 
and antidot radius. Such disorder would most seriously effect the random walks. Any 
abnormally wide constrictions would tend to localize the paths to orbit around an antidot, 
while abnormally narrow constrictions would tend to localize them to orbit a reservoir. The 
disorder of the real lattices studied in I is small, however it can be non-negligible in certain 
situations. In particular it is responsible for a conduction threshold which occurs on varying 
the electron density in zero field. 

When a comparison is made between the results in I and those presented here it is 
found that the lattices used were just inside the high scattering regime. The magnitude 
of the resistivity calculated here compares well with the values measured in I. However, 
whereas we predict a small PMR, the experiments showed a small NMR. Such discrepancies 
are not unexpected considering the simplicity of our model. 

Our model breaks down at high fields, where quantum effects become important, and 
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also at very low magnetic fields. As the field is reduced the cyclotron radius increases 
until eventually there exist orbit centres that are within r, of more than two antidots. 
The concept of a skipping orbit breaks down. Instead of considering the passage of an 
electron through a single consmction it is necessary to consider irs path through the lattice 
as a whole (Weiss 1991). Even in a perfect lattice there will be chaotic orbits present 
(Fleischmann 1992, Berthold 1992). Disorder will then be very important. For example, 
any deviation in the shape of an antidot from a circle will change the angle of a reflected 
electron. While this will not dramatically effect the motion of a skipping electron, it will 
drastically effect the subsequent path of an electron in a low magnetic field. 
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Appendix 

In general, the diffusion matrix is given by 

D = j ( lm(w(r )w(0))  dt. 

Define the vector T, to be m ( n , ,  yI). A random walk of an effective particle of length 
2N steps is then uniquely specified by the vectors T I  . . . TN. We can define a velocity 
w, = r,/2T, where T = 1(/(2($}~+~) is the time taken for one step. With these definitions 
the diffusion matrix becomes 

m 

We then have 

and 
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